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Abstract. Nonlinear Fokker-Planck equations (e.g., the diffusion equation for porous medium) are impor-
tant candidates for describing anomalous diffusion in a variety of systems. In this paper we introduce
such nonlinear Fokker-Planck equations with general state-dependent diffusion, thus significantly gener-
alizing the case of constant diffusion which has been discussed previously. An approximate maximum
entropy (MaxEnt) approach based on the Tsallis nonextensive entropy is developed for the study of these
equations. The MaxEnt solutions are shown to preserve the functional relation between the time deriva-
tive of the entropy and the time dependent solution. In some particular important cases of diffusion with
power-law multiplicative noise, our MaxEnt scheme provides exact time dependent solutions. We also prove
that the stationary solutions of the nonlinear Fokker-Planck equation with diffusion of the (generalized)
Stratonovich type exhibit the Tsallis MaxEnt form.

PACS. 66.10.Cb Diffusion and thermal diffusion – 05.20.-y Classical statistical mechanics – 05.60.-k
Transport processes

1 Introduction

The extensivity of entropy is one of the basic assump-
tions of standard thermodynamics and statistical me-
chanics. However, some of the currently most active ar-
eas of research in statistical physics deal with systems
that stubbornly refuse to follow the strictures of the ex-
tensivity paradigm [1]. A case example is provided by
self-gravitating systems [2]. Astrophysicists have tried for
decades to develop a thermostatistical description of self-
gravitating systems along the lines of standard statistical
mechanics [3,4]. The failure of those attempts was due to
the nonextensivity effects associated with the long range
of the gravitational interaction [4].

A new entropy functional introduced a few years ago
by Tsallis [5] is nowadays regarded as the possible basis
for a generalized thermostatistics [6] appropriate to deal
with nonextensive settings [7]. This entropy has the form

Sq =
1

q − 1

(
1−

∫
f(x)q dx

)
, (1)

where x ∈ RN is a dimensionless state-variable, f cor-
responds to the probability distribution and the entropic
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index q is any real number. This entropy recovers the stan-
dard Boltzmann-Gibbs entropy S = −

∫
f(x) ln f(x)dx in

the limit q → 1. The measure Sq is nonextensive such that
Sq(A+ B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), where
A and B are two systems independent in the sense that
f(x,x′)A+B = f(x)Af(x′)B. It is clear that q can be seen
as measuring the degree of nonextensivity. Many relevant
mathematical properties of the standard thermostatistics
still hold true within Tsallis’ formalism, or admit natural
generalizations [8–12]. Tsallis’ proposal was shown to be
consistent both with Jaynes’ Information Theory formula-
tion of statistical mechanics [13], and with the dynamical
thermostatting approach to statistical ensembles [14].

The recent application of Tsallis’ theory to an increas-
ing number of physical problems is beginning to provide
a picture of the kind of scenarios where the new formal-
ism is useful. Self-gravitating systems constituted the first
physical problem discussed within the nonextensive ther-
mostatistics [15]. That early application, in turn, inspired
Boghosian’s treatment of the two-dimensional pure elec-
tron plasma, yielding the first experimental confirmation
of Tsallis’ theory [16]. A possible solution of the solar neu-
trino puzzle based on Tsallis thermostatistics has been
advanced [17]. Some cosmological implications of Tsallis’
proposal have also been worked out [18]. Tsallis statis-
tics has been succesfuly applied to the peculiar velocity
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distribution of galaxy clusters [19] as well as to the
phase shift analysis for the pion-nucleus scattering [20].
The behaviour of dissipative low dimensional chaotic
systems [21,22], Hamiltonian chaotic systems with long
range interactions [23], as well as self organized critical
systems [24], have been discussed in connection with the
new approach. The Tsallis entropy has also been advanced
as the basis of a thermostatistical foundation of Lévy
flights and distributions [25]. The development of power-
ful optimization algorithms based on Tsallis thermostatis-
tics [26] constitutes another remarkable achievement of the
new formalism.

Another interesting feature is that exact time de-
pendent solutions for a family of nonlinear Fokker-
Planck equations can be obtained by the maximization of
Tsallis’ entropy under appropriate constraints [27]. One
of us has recently shown that Tsallis maximum entropy
(MaxEnt) distributions also provide stationary solutions
for linear Fokker-Planck equations characterized by ap-
propriate drift forces [28] (see also [29]). However, as re-
cently pointed out by Jespersen and his collaborators [30],
Tsallis MaxEnt distributions arise in a more natural way
within the context of nonlinear Fokker-Planck equations.
The main difference between the nonlinear Fokker-Planck
equations and the standard linear ones is that the diffusion
term depends on a power of the probability density. These
nonlinear Fokker-Planck equations admit important phys-
ical applications such as the percolation of gases through
porous media [31], thin liquid films spreading under grav-
ity [32], surface growth [33], and some self-organizing
phenomena [34]. In particular, they are used to describe
systems showing anomalous diffusion of the correlated
type [35,36]. Anomalous diffusion is characterized by the
fact that the mean square displacement of the relevant
state variable – written here for the one-dimensional vari-
able x – scales as 〈x2〉(t) ∝ tγ , where the diffusion expo-
nent γ = 1 yields normal diffusion, γ < 1 corresponds to
subdiffusion and γ > 1 corresponds to superdiffusion.

The solutions of the nonlinear Fokker-Planck equa-
tion studied in [27] correspond to the one-dimensional
case of a constant diffusion coefficient along with a lin-
ear homogeneous drift force. These analytical solutions
maximize the Tsallis entropy under the constraints im-
posed by normalization and the mean value of x and x2.
They are natural generalizations (in the sense of Tsal-
lis’ formalism) of the well known Gaussian solutions of
a (linear) Ornstein-Uhlenbeck process [37–41]. These re-
sults where later generalized to the the case of a linear
non-homogeneous drift [42]. The Tsallis MaxEnt solutions
were recently used to study the problem of aging [43] (see,
however, [44]). A phenomenological microscopic approach
to the nonlinear Fokker-Planck equation, based on an ap-
propriate generalization of Ito-Langevin dynamics, was re-
cently developed by one of us [44].

The existence of time dependent solutions of a Tsallis
maximum entropy form suggests that there is an intimate
relationship between the nonlinear Fokker-Planck equa-
tion and Tsallis thermostatistics. The aim of the present
effort is to pursue a further exploration of that connec-

tion. The paper is organized as follows. In Section 2 we
provide a brief review of Jaynes approach to time de-
pendent problems. Section 3 deals with some properties
of the nonlinear Fokker-Planck equation, in particular
with respect to state-dependent diffusion. In Section 4 we
consider the MaxEnt approach to the nonlinear Fokker-
Planck equation based on the Tsallis entropy. In Section 5
we show some particular cases where the nonlinear Fokker-
Planck equation admits exact solutions of the Tsallis max-
imum entropy form. Anomalous diffusion properties for
these cases are also discussed. Finally, some conclusions
are given in Section 6.

2 Maximum entropy approach to evolution
equations

The main idea of Jaynes maximum entropy approach to
evolution equations is to focus on the behaviour of the
mean values of a rather small number of relevant dy-
namical quantities, instead of trying to follow the tem-
poral evolution of the system in all its full detail. The
probability distribution function (or statistical operator,
in the case of quantum mechanics) adopted to describe
the system is then the one that maximizes the Shannon
entropy (S = −

∫
f(x) ln f(x)dx or S = −Tr(ρ ln ρ)) un-

der the constraints imposed by normalization and the
mean values of the relevant quantities. This approach
was introduced by Jaynes in order to provide a new for-
mulation of Statistical Mechanics based on Information
Theory [45–48]. The evolution equations considered by
Jaynes were the von Neuman equation and the Li-
ouville equation for Hamiltonian systems. Within that
context, the constants of motion of the system con-
stitute the most natural set of relevant mean values.
That choice allows one to obtain all the statistical
ensembles that appear in equilibrium statistical me-
chanics. However, one of the most interesting possibil-
ities allowed by Jaynes’ formulation is to include non-
conserved quantities within the set of relevant observ-
ables, in order to describe non-equilibrium situations.
For instance, let us consider a quantum system with
Hamiltonian Ĥ described by the density operator ρ̂. The
evolution of the density operator is given by the von Neu-
man equation

dρ̂
dt

= −i[Ĥ, ρ̂], (2)

where Planck’s constant was set equal to 1. The Ehrenfest
theorem provides the time derivative of the expectation
value of an observable Ôi

d〈Ôi〉
dt

= i〈[Ĥ, Ôi]〉. (3)

Now, suppose we have a set of M observables Ôi, i =
1, . . . ,M that close a semialgebra under commutation
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with the Hamiltonian operator

[Ĥ, Ôi] =
M∑
j=1

gijÔj , i = 1, . . . ,M, (4)

where gij are the concomitant structure constants. In that
case, the mean values of the M observables evolve accord-
ing to a closed set of linear ordinary differential equations,

d〈Ôi〉
dt

= i
M∑
j=1

gij〈Ôj〉, i = 1, . . . ,M. (5)

In this case, the M observables 〈Ôi〉 are as good as in-
tegrals of motions in order to implement Jaynes approach
[49–52]. Solving the linear differential equations (5), the
expectation values 〈Ôi〉(t) at any time t can be computed
from their values at an initial time t0. Hence, the concomi-
tant MaxEnt statistical operator ρ̂ME can be obtained at
any time t, as happens in the equilibrium situation. In-
deed, it can be shown that this MaxEnt density operator
is an exact solution to the von Neuman equation.

Of course, the closure condition (4) does not always
hold. However, even when the relevant observables Ôi do
not close a semialgebra with the Hamiltonian, we can still
close the set of equations (3) in a nonlinear and approxi-
mate way by recourse to the maximum entropy approach.
We can evaluate the expectation values appearing on the
right hand sides of equations (3) using a maximum en-
tropy density matrix ρ̂Me determined, at each time t, by
the constraints imposed by the M instantaneous expec-
tation values 〈Ôi〉. For an example of this scheme, let
us consider a quantum many body system. If the set of
relevant observables Ôi consists only of one-particle op-
erators, then the maximum entropy approximate closure
approach yields the well known time dependent Hartree-
Fock approximation.

Within the classical domain, these MaxEnt ideas
have been applied to a variety of evolution equations. A
maximum entropy scheme has been numerically imple-
mented for the cosmic ray transport equation [53]. The
MaxEnt approach has been applied to the Liouville equa-
tion associated with dynamical systems showing diver-
genceless phase space flows [54], to the (linear) Fokker-
Planck equation [55], and to a more general family of
evolution equations with the form of linear continuity
equations [56]. The inverse problem of reconstructing the
underlying microscopic dynamics from time-series using
maximum entropy ideas has also been addressed [57].

All the above referred applications of Jaynes’ approach
are based on the analysis of the evolution of the informa-
tion content associated with the set of relevant mean val-
ues. This information evolution is given by the behaviour
of those mean values, that is determined in turn by the
evolution equation under consideration.

3 The nonlinear Fokker-Planck equation

3.1 The operators LD and LR

Now let us focus on the nonlinear, generalized Fokker-
Planck equation, which is given by

∂f

∂t
= LRf + LD (fα) . (6)

Here f(x, t) is the normalized distribution function, LR

and LD are linear differential operators. We shall often
use the notation α = 2 − q which connects the nonlin-
earity in the diffusion equation with the entropic index
q parametrizing the Tsallis entropy. This result is known
from earlier work [27,42] where it was shown that a par-
ticular solution of the nonlinear Fokker-Planck equation
characterized by α maximizes the Tsallis entropy of index
q = 2− α. The drift term

LRf = −
N∑
i=1

∂(Kif)
∂xi

(7)

is due to the deterministic forces associated to the drift
vector K(x) ∈ RN of components Ki, while the nonlinear
diffusion term

LD

(
f2−q) =

N∑
i,j=1

∂

∂xi

(
Dij(x)

∂f2−q

∂xj

)
(8)

describes the effect of stochastic forces characterized by
the diffusion tensor D(x) ∈ RN×N , of components Dij .
Note that the diffusion coefficients may depend on the
state variable x, thus generalizing the previously studied
nonlinear Fokker-Planck equation with constant diffusion.
In the limit case q → 1, we recover the N -dimensional
linear Fokker-Planck equation,

∂f

∂t
= LFPf, (9)

which can be written in terms of just one single linear
differential operator LFP = LR + LD.

It will be useful for our later discussions to introduce
the adjoint operators L†R and L†D, defined by∫

f(LRf2)dx =
∫

(L†Rf1)f2dx, (10)

and ∫
f1(LDf2)dx =

∫
(L†Df1)f2dx, (11)

for any two probability distributions f1 and f2. These ad-
joint operators are

L†R =
N∑
i=1

Ki
∂

∂xi
(12)
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and,

L†D =
N∑

i,j=1

∂

∂xj
Dij(x)

∂

∂xi
· (13)

Defined in a similar way, the adjoint operator L†FP =
L†R +L†D plays an important role in the study of the linear
Fokker-Planck equation [39].

3.2 Generalized Stratonovich and Ito forms

Before we go on, let us first remark on other possible forms
of a nonlinear Fokker-Planck equation with x-dependent
diffusion tensor Dij(x). To this end, we revisit the stan-
dard linear Fokker-Planck equation. For the sake of sim-
plicity we will focus on the one-dimensional situation, but
our considerations on this point are also valid in the N -
dimensional case. For the linear Fokker-Planck equation,
there are two possible forms for state-dependent diffusion,
namely:

∂f

∂t
= − ∂

∂x
(K(x)f) +

∂

∂x

(
D(x)

∂f

∂x

)
, (14)

which is the Stratonovich form (here K and D stand, re-
spectively, for the single components of the drift vector
and the diffusion constant) and

∂f

∂t
= − ∂

∂x
(K(x)f) +

∂2

∂x2
(D(x)f), (15)

which is the Ito-form. Even in the linear case there has
been some discussion on which of these two forms should
be used (see for example [58]). Nevertheless, it should be
pointed out that these two forms can formally be mapped
into each other

∂f

∂t
= − ∂

∂x
(Kf) +

∂2

∂x2
(D(x)f) (16)

= − ∂

∂x
(Kf) +

∂

∂x

(
∂D

∂x
f

)
+

∂

∂x

(
D(x)

∂f

∂x

)
(17)

= − ∂

∂x
(K̃f) +

∂

∂x

(
D(x)

∂f

∂x

)
, (18)

where K̃ = K − ∂D
∂x now includes a noise-induced drift

term.
However, in the nonlinear case, the corresponding Ito

and Stratonovich forms are no longer equivalent. The
Stratonovich form corresponds to that of equation (6),
which in the one-dimensional case reads

∂f

∂t
= − ∂

∂x
(K(x)f) +

∂

∂x

(
D(x)

∂fα

∂x

)
, (19)

whereas the Ito form would be of type

∂f

∂t
= − ∂

∂x
(K(x)f) +

∂2

∂x2
(D(x)fα) . (20)

It is simple to see as follows that the Ito form can not be
mapped onto the Stratonovich form, nor does it have any
trivial solutions.

As we shall discuss again in Section 4, the stationary
solutions of the Stratonovich equation (19) are of the form

f(x) = Γ [1− β(1− q)Veff(x)]1/(1−q), (21)

with the effective potential

Veff = −
∫
K(x)
D(x)

dx. (22)

Here, β and Γ are appropriately defined constants. These
solutions are such that they maximize the nonextensive
generalized Tsallis entropy (1) under simple constraints,
and are therefore referred to as Tsallis distributions.

The stationary solutions of the Ito form (20) must on
the other hand satisfy

−K(x)f +
∂D(x)
∂x

fα = −D(x)
∂fα

∂x
, (23)

where we have assumed appropriate boundary conditions
on f . This equation does not allow for separation of
the variables f and x in any trivial form. Furthermore,
whichever (complicated) solutions one may find are def-
initely not of the Tsallis form. For these reasons we
prefer to work with the nonlinear state-dependent diffu-
sion equation of (6). Another argument in favour of the
Stratonovich form is that even in the linear case it is con-
sidered more physically relevant than the Ito form because
it gives a more realistic treatment of noise [39,40].

The nonlinear generalization of the Stratonovich form
provided by equation (6) shows, in the case of pure dif-
fusion (i.e., vanishing drift), another interesting property
related to the time derivative dSq[f ]/dt of the Tsallis en-
tropy Sq of equation (1). It is easy to prove that the time
derivative of Sq, evaluated on a particular solution f(x, t)
of equation (6), is given by

dSq
dt

= q(2− q)
∫

D(x)
f(x, t)

(
∂f

∂x

)2

dx, (24)

where we have again used α = 2 − q. Up to the constant
factor q(2− q), this expression coincides with the one that
holds in the usual case of linear diffusion. In the particular
and important case of constant diffusion we have

dSq
dt

= q(2− q)DI[f ], (25)

where I[f ] stands for the Fisher Information associated
with the distribution f ,

I[f ] =
∫

1
f

(
∂f

∂x

)2

dx. (26)

Hence, we see that the time derivative of Tsallis entropy
Sq behaves essentially in the same way as the standard
logarithmic measure does in the case of linear diffusion.
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4 Generalized maximum entropy approach

4.1 q-maximum entropy approximation

As mentioned in Section 2, the main idea of the
MaxEnt approach to time dependent probability distribu-
tion functions is to focus on the behaviour of a relatively
small number of relevant mean values, instead of trying to
follow in detail the evolution of the complete distribution
f(x, t). Here we shall reformulate these ideas within the
Tsallis generalized framework. Let us consider a set of M
q-generalized mean values

〈Ai〉q =
∫
fqAi(x)dx (i = 1, .....,M). (27)

Before proceeding we mention that the formalism which
we now develop can alternatively be obtained using the
normalized mean values 〈〈Ai〉〉q ≡ 〈Ai〉q/

∫
fqdx [59]

as well as by using the standard mean values 〈Ai〉 =∫
Aifdx. In the latter case all results will stay the same

except for a sign change (q−1 must be replaced by 1−q). It
is important to stress here that, among these three types
of mean values, the normalized q-mean values 〈〈Ai〉〉q are
the ones best suited in order to develop a well-behaved
thermostatistical formalism [59]. However, due to the fact
that some important features are shared by the three kinds
of mean values (namely, the power-law form of Tsallis
MaxEnt distributions and the Legendre transform struc-
ture of the concomitant thermostatistical formalism) [59],
the results of the present paper can be formulated in terms
of any of those three types of mean values. For the sake
of mathematical convenience we choose to work with the
mean values given by (27). Within the present application
of Tsallis theory, the formalism based upon the normal-
ized q-mean values leads to the same results as the ones
we obtain here, but with an unnecessary complication of
the mathematical calculations involved.

If the evolution is governed by the nonlinear Fokker-
Planck equation, then the time derivatives of these M mo-
ments of f(x, t) are given by

d〈Ai〉q
dt

= q

∫ {
LRf + LD

(
f2−q)} fq−1Aidx

(i = 1, . . . ,M). (28)

Unfortunately, these equations do not, in general, consti-
tute a closed system of ordinary differential equations of
motion for the mean values 〈Ai〉q. The integrals appear-
ing on the right hand sides of equations (28) are not, in
general, equal to linear combinations of the original mean
values 〈Ai〉q. Here enters the maximum entropy principle.
We can “close” the set (28), in an approximate way, by
evaluating the right hand sides using, at each instant of
time, the MaxEnt distribution fME(x, t) that maximizes
Tsallis’ entropy (1) under the constraints imposed by nor-
malization and the M instantaneous values of 〈Ai〉q. The
concomitant variational problem has a well-known analyt-

ical solution

fME(x, t) = Z−1
q (t)

[
1− (1− q)

M∑
i=1

λi(t)Ai(x)

] 1
1−q

,

(29)

where the (λi, i = 1, . . . ,M) are appropriate Lagrange
multipliers that guarantee compliance with the given con-
straints, and Zq is the partition function given by

Zq =
∫ [

1− (1− q)
M∑
i=1

λiAi(x)

] 1
1−q

dx. (30)

The generalized entropy Sq, the partition function
Zq, the generalized mean values, and the concomitant
Lagrange multipliers, are related by Jaynes’ thermody-
namical relations,

∂Sq
∂〈Ai〉q

= λi, (31)

and

∂λJ
∂λi

= −〈Ai〉q, (32)

where the (q-generalized) Jaynes’ parameter λJ is given by

λJ = lnq Zq =
Z1−q
q − 1
1− q · (33)

4.2 Evolution of the generalized entropy Sq

The time derivative of the entropy constitutes one of the
most important qualitative features characterizing the be-
haviour of probability density functions associated with
irreversible phenomena. When that derivative has a def-
inite sign, an H-theorem holds, and a useful mathemati-
cal realization of “the arrow of time” becomes available.
Given an approximate scheme for solving the evolution
equations describing the system under study, it is crucial
to know how close the behaviour of the entropy evalu-
ated on the approximate solutions follows the evolution of
the entropy of the exact solutions. Here we shall compare
the behaviour of the Tsallis entropy Sq corresponding to
exact solutions of the nonlinear Fokker-Planck equation,
with the behaviour associated to our MaxEnt solutions.

If f(x, t) is an exact solution of (1), we have

dSq
dt

=
q

1− q

∫
fq−1

{
LRf + LD

(
f2−q)}dx, (34)

which, after introducing the functional

Dq [f ] =
q

1− q

∫
fq−1

{
LRf + LD

(
f2−q)}dx, (35)

can be cast under the guise

dSq
dt

= Dq [f ] . (36)
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This last expression is preserved by the maximum entropy
approach, as can be seen as follows. We have

dSq [fME]
dt

=
M∑
i=1

∂Sq
∂〈Ai〉q

d〈Ai〉q
dt

=
M∑
i=1

λi
d〈Ai〉q

dt
(37)

which yields

dSq [fME]
dt

=

q

∫ {
LRfME + LD

(
f2−q

ME

)}
fq−1

ME

[
M∑
i=1

λi Ai

]
dx. (38)

But

M∑
i=1

λi Ai =
1

1− q
[
1− Z1−q

q f1−q
ME

]
(39)

so that

dSq [fME]
dt

=

q

1− q

∫ {
LRfME + LD

(
f2−q

ME

)}{
fq−1

ME − Z1−q
q

}
dx.

(40)

We now assume that (remember that Zq is just a number
and does not depend on x)∫

(LRfME)Zqdx =
∫ (

L†RZq
)
fMEdx = 0, (41)

and ∫
(LDfME)Zqdx =

∫ (
L†DZq

)
fMEdx = 0. (42)

These last two equations involve an integration by parts
procedure. We assume that fME verifies appropriate
boundary conditions (essentially, it goes to zero fast
enough with |x| → 0) in order for the “integrated part”
being zero. Then we obtain:

dSq [fME]
dt

=
q

1− q

∫ {
LRfME + LD

(
f2−q

ME

)}
fq−1

ME dx

= Dq [fME] , (43)

and have therewith proved that

dSq[fME]
dt

= Dq [fME] . (44)

We can conclude that the functional relation giving the
time derivative of the Tsallis entropy Sq in terms of the
approximate MaxEnt ansatz fME is the same as the one
verified in the case of the unknown exact solutions. This
important property is verified in general, for any (exact)
solution of the nonlinear Fokker-Planck equation and re-
gardless of the particular set of relevant mean values 〈Ai〉q

employed in order to build up the corresponding Tsallis
maximum entropy approximation. The present derivation
explicitly makes use of the q-MaxEnt form of the (approx-
imate) q-MaxEnt solution. However, it is possible that a
similar property holds within a more general context in-
volving other kinds of evolution equations endowed with
an associated “natural” entropic measure. This possibility
is currently under consideration.

4.3 Hamiltonian structure

We shall now obtain the equations of motion for the
Lagrange multipliers λi, and study how are they related to
the equations of motion of the concomitant mean values
〈Ai〉q. Making use of Jaynes’ thermodynamic relations, we
have

dλi
dt

=
M∑
j=1

∂λi
∂〈Aj〉q

d〈Aj〉q
dt

=
M∑
j=1

∂2Sq
∂〈Ai〉q∂〈Aj〉q

d〈Aj〉q
dt

=
M∑
j=1

∂λj
∂〈Ai〉q

d〈Aj〉q
dt

, (45)

which can be recast as

dλi
dt

=
∂

∂〈Ai〉q

 M∑
j=1

λj
d〈Aj〉q

dt


−

M∑
j=1

λj
∂

∂〈Ai〉q

(
d〈Aj〉q

dt

)
. (46)

Making use now of the equations of motion (28) for the
relevant mean values, and of the expression (37) for the
time derivative of the entropy, we finally obtain

dλi
dt

=
∂

∂〈Ai〉q

[
dSq[fME]

dt

]
− q

M∑
j=1

λj
∂

∂〈Ai〉q

∫ {
LRfME + LD

(
f2−q

ME

)}
fq−1

ME Ajdx.

(47)

Introducing now the Hamiltonian

H(〈A1〉q, . . . , 〈AM 〉q, λ1, . . . λM ) =

Dq[fME]− q
M∑
j=1

λj

∫ {
LRfME + LD

(
f2−q

ME

)}
fq−1

ME Ajdx,

(48)

the equations of motion for the relevant mean values and
their associated Lagrange multipliers can be put in a
Hamiltonian way,

d〈Ai〉q
dt

= −∂H
∂λi

, (49)



L. Borland et al.: The nonlinear Fokker-Planck equation with state-dependent diffusion 291

and

dλi
dt

=
∂H

∂〈Ai〉q
· (50)

In the expression (48) defining our Hamiltonian func-
tion, the MaxEnt distribution fME should be regarded as
parametrized by the set of M relevant mean values 〈Ai〉q.
That is to say, the specific values adopted by the M quan-
tities 〈Ai〉q determine, via the MaxEnt recipe, a particular
distribution fME. In this way, the functionals of fME ap-
pearing in (48) are functions of the M quantities 〈Ai〉q.
Consequently, the only dependence of the Hamiltonian on
the Lagrange multipliers is the one explicitly shown in
equation (48). It is important to realize that ours is not a
time dependent Hamiltonian, since its functional depen-
dence on the relevant mean values and their associated
Lagrange multipliers is dictated by the MaxEnt procedure
and does not depend on time.

Note also that although all the solutions of our time
dependent MaxEnt scheme evolve according to the Hamil-
tonian equations (49, 50), not all the orbits associated
with the Hamiltonian (48) constitute realizations of our
MaxEnt approach. The orbits that are relevant to our
problem are those whose initial conditions verify

〈Ai〉q =
1
Zqq

∫
dxAi(x)

[
1− (1− q)

M∑
i=1

λiAi(x)

]q/(1−q)
,

i = 1, . . . ,M. (51)

These M equations determine an M -dimensional
submanifold of the full 2M phase space
(〈A1〉q, . . . , 〈AM 〉q, λ1, . . . , λM ). This submanifold
constitutes an invariant set of our Hamiltonian dynamical
system. That is to say, any orbit with initial conditions
belonging to the set stays within it forever.

Summing up, we conclude that within the present
time dependent thermostatistical context the relevant
mean values and their concomitant Lagrange multipliers
are conjugate variables not only in the thermodynamical
sense, but also in the Hamiltonian phase space sense.

4.4 Variational treatment

We shall now introduce an appropriate variational princi-
ple for the nonlinear Fokker-Planck equation. In analogy
to the treatment of the linear Fokker-Planck equation us-
ing the standard Boltzmann-Gibbs entropy [55], we pro-
pose the q-generalized action

K = q

t2∫
t1

dt
∫

dxfq−1g(x, t)
{
∂f

∂t
− LRf − LD

(
f2−q)}

+

t2∫
t1

Dq [f ] dt−
∫
fq(x, t2)g(x, t2)dx, (52)

where an auxiliary quantity g(x, t) has been introduced.
The variational principle should provide us with equa-
tions of motion for both f(x, t) and g(x, t). The need
to introduce auxiliary variables in order to formulate an
action principle for systems showing diffusive or dissipa-
tive behaviour occurs in many problems of mathematical
physics [60]. Usually, there exists a mathematical trans-
formation relating the auxiliary variable with the original
one [60]. We will see that this is indeed the case with the
present action principle.

We shall use the “mixed” boundary conditions

f(x, t1) = f(x)in (53)
g(x, t2) = g(x)out.

The action principle

(δK)f,g = 0 (54)

leads to the partial differential equation for f(x, t) and the
auxiliary variable g(x, t).

For arbitrary δg,

(δK)gg = 0⇒ f q−1

{
∂f

∂t
− LRf − LD

(
f2−q)} = 0,

(55)

so that

∂f

∂t
− LRf − LD

(
f2−q) = 0 (56)

is the non-linear Fokker-Planck equation.
For arbitrary δf ,

(δK)f = q

t2∫
t1

dt
∫

dxg(x, t)δ(fq−1)

×
{
∂f

∂t
− LRf − LD

(
f2−q)}

+q

t2∫
t1

dt
∫

dxg(x, t)fq−1δ

×
{
∂f

∂t
− LRf − LD(f2−q)

}

+

t2∫
t1

dt δDq[f ] = 0. (57)

The first term of right hand side, because of (55), makes
no contribution. Then,

(δK)f = 0⇒
∂
(
gfq−1

)
∂t

+L†R(gfq−1) + (2− q)f1−qL†D(gfq−1)

− 1
1− q

{
L†R(fq−1) + (2− q)f1−qL†D(fq−1)

}
+f q−2

{
LR(f) + LD(f2−q)

}
= 0. (58)
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Summing up, both f(x, t) and g(x, t) verify the coupled
equations

∂f

∂t
− LRf − LD

(
f2−q) = 0, (59)

and

∂
(
gfq−1

)
∂t

+ L†R(gfq−1) + (2− q)f1−qL†D(gfq−1)

− 1
1− q

{
L†R(fq−1) + (2− q)f1−qL†D(fq−1)

}
+fq−2

{
LR(f) + LD(f2−q)

}
= 0. (60)

These two evolution equations are closely related.
Given a time dependent solution f(x, t) of the first
equation (59), it is easy to verify that

g(x, t) =
1− f1−q

1− q , (61)

provides a solution to equation (60). We can rewrite this
last relation in terms of the generalized functions that have
been recently introduced inspired by Tsallis Thermostatis-
tics [61],

g = − lnq f. (62)

This equation shows that there is a simple mathemati-
cal connection between f and g related to the Tsallis q-
formalism.

Finally, we conclude this section by pointing out again
that all of the above results in the q-generalized maxi-
mum entropy derivation can alternatively be obtained us-
ing the normalized q-mean values 〈〈Ai〉〉q ≡ 〈Ai〉q/

∫
fqdx

instead of the q-averages 〈Ai〉q defined in equation (27).
Equivalent results are also found by using standard aver-
ages 〈Ai〉 =

∫
fAi(x)dx. The only difference (apart from

philosophical ones) is manifested in that q − 1 is replaced
by 1− q.

5 Examples

5.1 Exact time-dependent solutions

In the following we shall illustrate the above ideas by seek-
ing maximum entropy time-dependent solutions to the
one-dimensional nonlinear Fokker-Planck equation with x-
dependent diffusion. There has already been some recent
work in studying solutions of the nonlinear Fokker-Planck
equation with constant diffusion coefficient Q:

∂f

∂t
= − ∂

∂x
(K(x)f) +Q

∂2fα

∂x2
. (63)

Exact solutions have been proposed in [27,42]. The sta-
tionary solutions are of the form

f(x) = Γ [1− β(1− q)V (x)]1/(1−q), (64)

with q = 2 − α, V (x) = −
∫
K(x)dx, β = Γ q−1

αQ and
Γ = 1/Zq where Zq is the generalized partition function.
To be physically reasonable, q may take on any real num-
ber q < 3, above which f has normalization problems [42].
There is a singularity in the nonlinear Fokker-Planck equa-
tion at q = 2 but physically relevant solutions can still
be found [44]. The solutions (21), referred to as Tsallis
distributions, are such that they maximize the nonexten-
sive generalized Tsallis entropy equation (1). The time-
dependent solutions are also of the same general form,
but now one has time-dependent coefficients such as β(t)
and Γ (t). For all these solutions there is a cut-off if the ar-
gument in square brackets becomes negative. In this case,
f(x, t) = 0.

Let us now seek solutions to the more general nonlinear
Fokker-Planck equation of the form (19), namely

∂f

∂t
= − ∂

∂x
(K(x)f) +

∂

∂x

(
D(x)

∂fα

∂x

)
. (65)

The stationary solutions must satisfy

∂

∂x

[
−K(x)f +D(x)

∂fα

∂x

]
= 0, (66)

so that the expression in square brackets must be a con-
stant, which can be made to vanish by assuming appro-
priate boundary conditions. This yields

αfα−2df =
K(x)
D(x)

dx, (67)

which can be solved to give the expression already shown
in equation (21), namely

f(x) = Γ [1− β(1− q)Veff(x)]1/(1−q), (68)

with the effective potential

Veff = −
∫
K(x)
D(x)

dx, (69)

and the constant β = Γ q−1/Qα. This shows that for the
nonlinear Fokker-Planck equation of type (65), the sta-
tionary solutions are of the same Tsallis form as the case
D(x) = Q.

Now we begin our quest for some time-dependent solu-
tions to equation (65). Let us consider drift and diffusion
coefficients of the form

K(x) = −cKxγ (70)

and

D(x) = cDx
r, (71)

where γ and r are real numbers. This corresponds to the
physical situation of multiplicative noise, where x is usu-
ally limited to x > 0. Note that one may include the x < 0
regime also by redefining K = |x|γ−1x and D = |x|r. For
the standard linear Fokker-Planck equation, similiar prob-
lems have been studied for example by [62,63]. With our
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choice of K and D, we have the relation s ≡ γ − r + 1,
where s corresponds to the power of x in the effective
potential

Veff(x) =
cK
cD

∫
xγ

xr
dx ∝ xs. (72)

Our time-dependent maximum entropy ansatz is chosen as

f(x, t) = Γ (t)[1− (1− q)β(t)xs]1/(1−q). (73)

(Note that the most general maximum entropy ansatz
would contain instead of βxs a sum of the type

∑
λν(t)xν

where each power of x is associated with a Lagrange multi-
plier λ. For the sake of simplicity we choose not to discuss
this case here.)

Let us now insert equation (73) into equation (65). We
obtain:

∂f

∂t
= Γ̇A1/1−q − Γ β̇xsAq/1−q (74)

∂

∂x
(Kf)=−γKx

γ−1ΓA1/1−q + cKβΓsx
γ+s−1Aq/1−q (75)

∂

∂x

(
D
∂

∂x
f2−q

)
=

cD(q − 2)βs(s+ r − 1)Γ 2−qxs+r−2A1/1−q

− cD(q − 2)β2s2Γ 2−qx2s+r−2Aq/1−q , (76)

where A = 1 − (1 − q)βxs, and we have substituted
α = 2 − q. The question now is if we can find values
of γ and r so as to obtain a set of unique solutions to
the equations (74–75). Our study shows that this is in-
deed the case if γ = 1 and r + s = 2, which results in
terms of the type A1/(1−q), Aq/(1−q) and xsAq/(1−q) in the
expressions (74–75). Comparing coefficients then gives the
following relations:

dΓ
dt

= cKΓ − sβcD(2− q)Γ 2−q (77)

dβ
dt

= cKsβ − cD(2− q)Γ 1−qs2β2, (78)

which results in

dβ
dt

= s
β

Γ

dΓ
dt
, (79)

so that, after integration, one finds

β(t) = β(t0)
(
Γ (t)
Γ (t0)

)s
, (80)

where t0 is an initial time which we set to t0 = 0 in the fol-
lowing. Expression (80) can be inserted into equation (77)
to obtain the following differential equation for Γ

dΓ
dt

= cKΓ − s
β(t0)
Γ (t0)s

cD(2− q)Γ 2+s−q, (81)

which can be solved to give

Γ (t) = Γ (t0)
[
(1− δ)e−t/τ + δ

]−1/(1+s−q)
, (82)

with

δ = cD(2− q)sβ(t0)Γ (t0)1−q/cK (83)

and

1/τ = cK(1 + s− q). (84)

(Note that the parameters in Eq. (83) must be chosen
so that δ < 1 to obtain physically relevant solutions). It
follows then from equation (80) that

β(t) = β(t0)
[
(1− δ)e−t/τ + δ

]−s/(1+s−q)
. (85)

The time-dependent solution to the problem of nonlinear
diffusion with linear driftK(x) = −cKx (remember γ = 1)
and nonlinear diffusion D(x) = cDx

r is thereby given by
the ansatz in equation (73) (with s = 2 − r) together
with the evolution equations (82, 85). In Figures 1 and 2
we show some examples of time-dependent solutions for
different q and s.

Let us now study the important case of free diffusion,
which occurs when cK = 0. In this case we obtain from
equation (77) the solution

Γ (t) =
[
Γ q−s−1

0 + cD
β0

Γ s0
s(2− q)(1 + s− q)t

]−1/(1+s−q)
.

(86)

The corresponding expression for β(t) can then be ob-
tained straightforwardly from equation (80). We see that
in both the cases of free and confined diffusion (cK 6= 0),
the two effects stemming from s and q combine to deter-
mine the temporal behaviour of Γ and β: the s = 2 − r-
term is determined by the power r of the x-dependent non-
linear diffusion coefficient, whereas the q = 2− α term is
related to the power α of the nonlinearity in f . These two
effects will ultimately determine the rate of the anomalous
diffusion of the process. This can be seen more explicitly
by calculating 〈x2〉(t) in the limit t → ∞, for the case of
free diffusion. We obtain

〈x2〉 =
∫
x2f(x, t)dx (87)

= Γ

∫
x2[1− (1− q)βxs]1/(1−q)dx, (88)

which can be greatly simplified by introducing the new
integration variable u = [(1 − q)β]1/sx if 1 − q > 0. (If
1 − q < 0 introduce instead u = [−(1 − q)β]1/sx and
proceed along the same lines.) Consequently we find

〈x2〉 = Γ [(1− q)β]−3/s

∫
u2(1− us)1/(1−q)du. (89)
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Fig. 1. Solutions f(x, t) to the nonlinear Fokker-Planck equa-
tion with linear drift and multiplicative nonlinear power-law
diffusion of type xr, with r = s − 2 (where s is the power
of x in the effective potential Veff = xs). Here we see f(x, t)
for q = 1.5 and three different values of s: s = 2 corresponds
to the case of constant diffusion, while s = 1 yields a diffu-
sion function 1/x and s = 3 represents multiplicative noise of
type x. Note how both the tails (for large x) and the curvature
(for small x) change with s. Stationary solutions correspond to
those at long times (e.g. t = 100).

But the last integral now depends only on u and is
therefore irrelevant in our discussion on temporal be-
haviour which is contained in Γ (t) and β(t) as given by
equation (86) together with equation (80). Asymptotically
then, our calculation yields

〈x2〉(t) ∝ t2/(1+s−q) = t2/(1+α−r). (90)

This implies that we obtain normal diffusion for s = q+ 1
(i.e., α − r = 1), sub-diffusion for s > q + 1 (i.e., r >
α − 1) and super-diffusion for s < q + 1 (i.e., r < α −
1). For the special choice of s = 2 which corresponds to
constant diffusion, we see that this result coincides with
the previous results obtained in [43,44].

Note that in the above we calculated 〈x2〉 using stan-
dard averages (taken over f) and not generalized q-
averages (taken over f q). We proceed in such a fashion
because the definition of the anomalous diffusion expo-
nent is based on the standard average, used when the only
available information about the system under study con-
sist of certain observations, such as a time-series of the
state-variable x. However, it is interesting to take a look

x
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Fig. 2. Here we show f(x, t) corresponding to the nonlinear
Fokker-Planck equation with linear drift and three types of
multiplicative noise xr (r = s−2, with effective potential Veff =
xs) at q = 0.5: s = 1 corresponds to 1/x noise, s = 2 is constant
noise and s = 3 is linear multiplicative noise x. Notice how the
distribution changes shape as s increases. Stationary solutions
correspond to the long-time solutions shown here (t = 100).

at the generalized 〈x2〉q(t) averages as well. We have

〈x2〉q =
∫
x2fq(x, t)dx (91)

= Γ q
∫
x2[1− (1− q)βxs]q/(1−q)dx, (92)

which yields

〈x2〉q(t) ∝ t(3−q)/(1+s−q) = t(1+α)/(1+α−r). (93)

We see that for constant diffusion (s = 2 i.e., r = 0)
the diffusion exponent becomes equal to 1 for all values
of q (and therewith α). This implies that the system dif-
fuses normally with respect to the subspace of phase-space
captured by the f q representation, where rare and com-
mon events are weighted differently. It also implies a q-
invariance in this representation which exists beyond the
s = 2 (i.e., r = 0) case in the sense that we find – inde-
pendently of q – normal diffusion for s = 2 (i.e., r = 0),
sub-diffusion for s > 2 (i.e., r < 0) and super-diffusion
for s < 2 (i.e., r > 0). The actual value of the diffusion
exponent does however still depend on q for general s 6= 2.
Some plots of 〈x2〉(t) and 〈x2〉q(t) for different q and s are
shown in Figures 3 and 4.
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Fig. 3. The diffusion exponent γ is defined as 〈x2〉(t) ∝ tγ. γ
corresponds to the slope in this (asymptotic) log-log plot for
free diffusion, and we clearly see that it is determined by both
q and s. In particular we have normal diffusion (γ = 1) for
s− q = 1, subdiffusion (γ < 1) for s− q > 1 and superdiffusion
(γ > 1) for s− q < 1. Some lines for particular values of q and
s are shown. s corresponds to the power of the multiplicative
noise which is given by xs−2.

Figuratively speaking, these results tell us that, in the
case of constant diffusion, the underlying dynamics of the
system are confined to the f q space, within which every-
thing acts as a normal, linear diffusive system. If we view
the system through f q weighted “glasses”, then we also
see it as a normally diffusing system, q-invariant and com-
pletely analogous to a standard q = 1 system. However, if
we have no knowledge neither of the underlying dynamics
nor of which f q glasses to choose (as is most often the
case!) we simply view the system through ordinary homo-
geneously weighted f glasses. In doing so we perceive all
kinds of q dependent anomalies. If the diffusion is state-
dependent, the same behaviour still holds, the only differ-
ence being that the actual value of the diffusion exponent
is not q-invariant in the f q-case. It is in itself interesting
to note that the mere inclusion of a multiplicative noise
term captures this q-effect, otherwise unseen in the f q

representation.
Finally, it is instructive to compare the behaviour of q-

mean values within the nonlinear Fokker-Planck equation
with their behaviour in the case of the Liouville equation
associated with a Hamiltonian H(qi, pi) (the Hamiltonian
systems we are considering here should not be confused
with the Hamiltonian structure discussed in Section 4.
That structure was associated with the “macroscopic”
evolution of the parameters characterizing the MaxEnt so-
lutions of the nonlinear Fokker-Planck equation. However,
solutions of the Fokker-Planck equation do not describe
an ensemble of independent systems evolving according
to an underlying Hamiltonian dynamics, as is the case in
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Fig. 4. Within the generalized Tsallis thermostatistics, it is
also interesting to look the q-generalized time dependent mo-
ment 〈x2〉q(t) ≡

R
x2fqdx ∝ tγq . We can calculate the corre-

sponding q-generalized diffusion exponent γq as the slope in
this log-log plot, calculated for free diffusion with multiplica-
tive noise xs−2. We find a q-invariant behaviour in the fol-
lowing sense: Normal diffusion is always obtained for s = 2
(constant diffusion) independent of q. Similarly, there is sub-
diffusion (γq < 1) for s > 2 and superdiffusion (γq > 1) for
s < 2. Only the actual value of γq depends on q, but not the
type of diffusion. This last q-dependent effect is only seen for
multiplicative noise (s 6= 2).

the Hamilton-Liouville context). It is easy to verify that
for any time dependent solution f(qi, pi, t) of Liouville’s
equation, f q(qi, pi, t) is also a solution. Therefore, the gen-
eralized q-mean values 〈B〉q =

∫
fq(qi, pi, t)B(qi, pi)dΩ

behave essentially in the same way as the standard
linear mean values. A similar situation happens in the case
of the von Neumann equation associated with quantum
Hamiltonian systems, which yields the q-generalization of
Eherenfest’s Theorem [13]. Hence, within this Hamilton-
Liouville (or von Neumann, in the quantum case) context
we are allowed to say that the macroscopic dynamics is
completely “q-invariant”. For example, if we have a free
particle, both 〈x2〉 and 〈x2〉q grow as t2. The reason for
this full “q-invariance” boils down to two simple proper-
ties of the (Hamiltonian) Liouville equation. First of all,
it is a linear evolution equation. Secondly, it is associated
with a dynamical system exhibiting a divergenceless phase
space flow [54]. In order to clarify this last assertion, let’s
consider the more general case of divergenceless dynamical
system [54]

dx
dt

= v(x), x,v ∈ RN , (94)

where we assume a divergenceless flow in phase space

∇ · v = 0. (95)
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Hamiltonian systems constitute particular instances of
this family of dynamical systems [54]. The concomitant
Liouville equation reads

∂f

∂t
+∇ · (vf) =

∂f

∂t
+ v · (∇f) = 0, (96)

where the divergenceless condition was used. Now, the last
equality can be recast under the guise(

df(x, t)
dt

)
Orbit

= 0, (97)

where the time derivative in the last equation is evaluated
along a particular orbit of the dynamical system (94). It
is now easy to see that given a solution f(x, t) of (97),
any power f q will satisfy that equation too, and full q-
invariance will ensue. On the contrary, this complete “q-
invariance” will be lost if we deal with nonlinear evolution
equations, or even with linear Liouville equations arising
from a phase space flow with nonvanishing divergence.

5.2 Another possible class of solutions

We now conclude with a brief discussion of a slightly dif-
ferent class of solutions, mainly in order to make an exact
connection with the previously studied solutions to the
one-dimensional nonlinear Fokker-Planck equation with
constant diffusion. These contain earlier results on the
time-dependent solutions to the nonlinear Fokker-Planck
equation as a particular case. The ansatz we look at now
is of the form

f(x, t) = Γ (t)[1− (1− q)β(t)(x − x0(t))s]1/(1−q), (98)

which is the same as the maximum entropy ansatz used
above except for the x0(t) term. Studying solutions of this
type is important because it is a possible generalization
of the Gaussian case that incorporates in a natural way
many powers of x as constraints. Note that this ansatz is
also a maximum entropy ansatz, just rewritten so that in
certain instances the Lagrange multipliers in the standard
formalism are split into products of β(t) and powers of
x0(t).

By inserting equation (98) into the nonlinear Fokker-
Planck equation (65) one can perform an analysis com-
pletely analogous to the example discussed above. Our
study shows that there are only two sets of possible pa-
rameter choices which yield solutions. One set is given by
r = 0, s = 2 and γ = 1. This however corresponds to con-
stant diffusion and results just in the solutions found by
Plastino and Plastino [27] and Tsallis and Bukman [42].
The second set of parameters which admit a solution is
given by s = r = γ = 1. But this solution can be rewrit-
ten, without loss of generality, such that x0 = 0. It then
takes on the same form as the s = 1 solution found above
using the ansatz (73).

6 Conclusions

The main point of this paper was to study the nonlin-
ear Fokker-Planck equation with general x-dependent dif-
fusion, thus generalizing the case of constant diffusion
which has been discussed previously [27,42]. An approx-
imate maximum entropy approach was developed, based
on the nonextensive Tsallis entropy, together with a vari-
ational action principle. It was found that if the nonlin-
ear Fokker-Planck equation is of a Stratonovich-like type
(as opposed to the Ito form) then the general station-
ary solutions are of the type that maximize the Tsallis
entropy, comparable to the way in which Gaussian dis-
tributions which maximize the standard Shannon entropy
are stationary solutions to the linear Fokker-Planck equa-
tion. Our analysis supports the idea that the Stratonovich
form is the more physically relevant one, a conclusion also
found in the case of the linear Fokker-Planck equation
due to the fact that the Stratonovich approach includes
a more realistic treatment of the noise [39,40]. Also true
for the nonlinear Stratonovich form is that the maximum
entropy solutions preserve the functional relation between
the time derivative of the entropy and the time dependent
solution. This fact is quite remarkable. In addition, exact
time-dependent solutions were found for some physically
interesting cases, namely linear drift and power-law non-
linear multiplicative noise. We found that both the degree
of nonlinearity in the Fokker-Planck equation itself to-
gether with the power of the multiplicative noise combine
to ultimately determine the rate of anomalous diffusion
of the process. However, we also studied a q-generalized
diffusion exponent, based on f q averages rather than the
standard f average, and found that important proper-
ties of the diffusion are q-invariant in that representation:
Whether normal-, super-, or subdiffusive depends only on
the power of the multiplicative noise. Further investiga-
tion of a q-generalized diffusion exponent based on the re-
cently introduced normalized q-averages [59] is currently
underway.
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